CRYSTAL CHEMISTRY AND SUPERCONDUCTIVITY OF PRESSURE-INDUCED PHASES IN THE In-Te SYSTEM

S. GELLER,* A. JAYARAMAN and G. W. HULL, Jr.

Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey

(Received 17 July 1964)

Abstract—In the In–Te system, a pressure-induced NaCl-type phase exists in the region $In_{0.80}$ Te to $In_{1.15}$ Te. Superconductivity exists in the whole range, with the maximum transition temperature occurring for the stoichiometric InTe. A hypothesis previously given for the metallic behavior of this phase and the decrease of transition temperature on either side of the stoichiometric InTe is further elaborated. It is proposed that the transformation to the NaCl-type structure removes the structural constraint on electron transfer existing in the normal InTe. A method for calculating carrier concentration is given and it is shown that the superconducting transition temperature is a function of carrier concentration.

At least two other pressure-induced In–Te phases exist. One is In₃Te₄ which becomes superconducting at 1·25-1·15°K. In₃Te₄ has the anti-Sn₄As₃ structure with seven atoms in a rhombohedral unit cell, all lying on the threefold axis. The positional parameters of the atoms and interatomic distances are given and the coordination shown to be related to that found in the NaCl-type structure. Pressure-temperature experiments on normal In₂Te₃ indicate that a pressure-induced phase with this (or approximately this) composition cannot be obtained metastably without the presence of the In₃Te₄ and an unidentified phase. The pressure-induced In₂Te₃ phase has the well-known Bi₂Te₃ structure and is closely related to the In₃Te₄ structure. Superconductivity tests and X-ray diffraction investigation lead to the conclusion that the In₃Te₄ phases occurring with the In₂Te₃ phase are sometimes not stoichiometric and in such cases usually contain excess tellurium.

INTRODUCTION

In a recent letter, (1) we reported the occurrence and superconducting behavior of pressure-induced vacancy structures of the NaCl-type in the In-Te system. It was proposed that the metallic behavior of the NaCl-type InTe resulted from the removal of the structurally imposed constraint in the normal phase, on electron transfer from In+ to In³⁺ ions. This proposal has led to successful prediction (2) of other superconductors with NaCl-type and a related structure and of existence of solid solution regions in NaCl-type phases of binary systems.

The behavior of the In-Te system at high pressures is quite complex and we shall discuss in this paper only those aspects of it which are fairly clear.

EXPERIMENTAL

Appropriate amounts of the constituent elements in each case were melted together in an evacuated sealed

fused silica tube. The resulting product was ground and mixed thoroughly to ensure homogeneity. X-ray powder photographs always showed the mixture of normal compounds expected from the phase diagram reported by KLEMM and VOGEL. (3) Specimens were packed into Ta containers and subjected to pressure and heating as described elsewhere. (4) The NaCl-type compounds were obtained usually by using 30 kbar and 400–500°C for various lengths of time not exceeding 4 hr. Pressures and temperatures for other phases will be given in later sections.

X-ray powder photographs (CuK radiation) were taken of all specimens subjected to high pressure and in some cases diffractometer patterns were obtained. Single crystal X-ray data were also obtained in some cases to be discussed later.

Superconductivity tests were made by the method of Schawlow and Devl. 10. (5)

THE NaCl TYPE PHASES

Results

Since our earlier publication⁽¹⁾ on the Te-rich NaCl-type compounds, we have obtained In-rich pressure-induced NaCl-type phases to approximately In_{1.15}Te. It has also been possible to extend

^{*} Present address: North American Aviation Science Center, Thousand Oaks, California.

the Te solubility to In_{0.80}Te; previously we reported that it extends to In_{0.82}Te. The results of superconductivity tests on these specimens are given in Table 1.

The lattice constants of all specimens are listed in Table 1 and plotted vs. composition in Fig. 1.* On the In-rich side, there is practically no change in lattice constant with change in In concentration; this was one of the reasons we thought earlier that solid solution on the In-rich side did not exist. Further, although excess Te enhances the oddindex X-ray reflections, excess In does not appear to do so. In fact, careful examination now shows that although we can just see the {111} reflection of stoichiometric InTe, it can no longer be seen in the photograph of In_{1.15}Te. Also, the stability at atmospheric pressure of these phases is greater, the greater the Te content; on the In-rich side, the stability is markedly less than that of stoichiometric InTe. Superconductivity tests on the Inrich specimens which had already begun to revert

indicate that the composition tends to move toward the stoichiometric InTe with exsolution of In possibly containing dissolved Te.

Table 1. Superconducting transition temperatures, T_c, and lattice constants, a, and carrier concentrations, n, for In_{1-x}Te and In_{1+x}Te compounds with NaCl-type structure

1+x	(°K)	<i>a</i> (Å)	$n \times 10^{-22} / \text{cm}^3$
1.15	2.60-2.35	6·179 ± 0·005	1.34
1.10	2.80-2.55	6.182	1.45
1.05	3.41-2.95	6.181	1.58
1.015	3.51-3.25	6.178	1.67
1.00	3.45-3.20	6.177	1.71
1-x			
0.95	2.7 -2.5	6.14 + 0.01	1.47
0.91	2.04-1.87	6.110 + 0.003	1.28
0.87	1.55-1.40	6.081	1.09
0.83	1.15-1.09	6.055	0.88
0.82	1.06-1.02	6.052	0.83
0.80		6.040	

The X-ray data on the In-rich compounds indicate that the excess In atoms replace Te atoms. If Te vacancies were to occur, the intensity of the {111} reflection should first decrease and at about

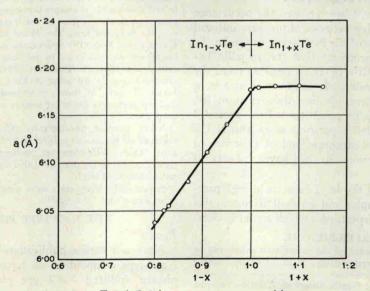


Fig. 1. Lattice constant vs. composition.

^{*} A reconsideration of the plot of lattice constant vs. 1-x for the $In_{1-x}Te$ phases⁽¹⁾ indicated that a straight line could be passed through the points for $x \ge 0.05$. This line extrapolates to a = 6.175 Å for stoichiometric InTe (see Fig. 1). The back-reflection lines of the powder photograph of our original InTe were quite broad. We have since made a new specimen for which the back-reflection lines were much sharper and which gave a = 6.177 Å.

the composition $InTe_{0.94}$ would be identically zero. However, on further dissolution of In, the {111} intensity should increase again and at $InTe_{0.87}$ (i.e. $In_{1.15}Te$) it should be relatively more intense than it is for stoichiometric InTe. For increasing replacement of Te by In, there should be a continuous decrease in the intensity of the {111} reflection and, because of its low value for $In_{1.15}Te$, is not observed.

Discussion

The basis of the explanation proposed for the metallic behavior of the NaCl-type In—Te phases is an extension of the effective ionic model for semiconductors enunciated by GOODMAN. (6) In this model any semiconducting compound can be assigned a plausible ionic formula provided that the arrangement of the atoms in the crystal is known. This can be done because such compounds have saturated ionic-covalent bonds; that is to say, in a pure stoichiometric semiconducting compound the valence electrons are constrained by formation of these bonds.

The InTe phase⁽⁷⁾ stable at atmospheric pressure is isostructural with TISe(8) and therefore has the ionic formula In_{0.5}In_{0.5}³⁺Te. The In+ ions have 8- and the In³⁺, 4-coordination by Te²⁻ ions. The structure therefore stabilizes the valencies, preventing free transfer of electrons from the In+ to In³⁺ ions. However, the structural constraint on electron transfer is removed when InTe transforms to the NaCl-type structure; in this structure all cations have 6-coordination by Te²⁻ ions. The ease with which the electron transfer can now occur leads to metallic conductivity. Now the semiconductor AgSbTe2 is isoelectronic with InTe and has (9) a disordered statistical NaCl-type structure at atmospheric pressure. In contrast with the In+ ion however, the second ionization potential of the Ag+ ion must be very large, thereby inhibiting electron transfer to Sb3+ ions.

The above ideas have led to successful prediction⁽²⁾ of metallic behavior of other intermetallic compounds with NaCl-type and a related structure. Metallic conduction results if the cation is present in two valence states, one of which is less stable than the other. The ionic model also appears to be a basis for predicting or accounting for the existence of solid solution ranges in the intermetallic NaCl-type compounds. If the cation has one stable

valence, as for example in the high pressure forms of CdSe and CdTe, (10) no solid solution should be expected.* (Such phases should be semiconductors.) If the cation has two possible valencies and the lower one is numerically equal to that of the anion, solid solution should occur on the anionrich side because the valence of the anion can be balanced electrostatically by a proper 'mixture' of the higher and lower valence cations; an example is $Sn_{1-x}Te$. However, in this case solid solution rich in the cation should not be attainable.* If the cation has two possible valencies, one of which is numerically lower, the other higher than that of the anion, solid solution rich in either constituent should exist; one example is the Sn-Sb system. (10) Also we have recently reported(2) such occurrence in the Sn-As system, in which case high pressures are required to effect solid solution. It was these ideas that led us to the In-rich NaCl-type In-Te phases which we had at first thought did not exist: while on the Te-rich side, more In3+ than In+ ions are present, on the In-rich side, more In+ than In³⁺ ions are present.

The ionic model also permits the calculation⁽²⁾ of carrier concentrations. In $In_{1-x}Te$, there are y monovalent and (1-x-y) trivalent In ions per formula unit; then $y+3(1-x-y)=2\cdot00$, the total valence which must be electrostatically balanced by In ions. Then y=(1-3x)/2 and (1-x-y)=(1+x)/2, which except for x=0 is always larger than the number of monovalent ions. Because each In⁺ ions has two electrons, which in the NaCl-type structure are bound to it with nearly zero energy, the number of carriers is 2y or (1-3x). The unit cell contains four formula units; thus, the carrier concentration, n, is $4(1-3x)/(a^3\times10^{24})$ per cm³, where a is the lattice constant.

On the In-rich side there will be an excess of In+ ions; thus, the number of In³⁺ ions will determine the number of carriers because the latter cannot exceed twice the number of acceptor ions. A comparison of results on SnAs and Sn₄As₃⁽²⁾ with those on InTe and In₃Te₄ (see following

^{*}We refer here to substantial solid solution. It is possible for very small deviations to occur through, for example, the creation of anion vacancies plus two electrons for each vacancy as proposed by BLOEM⁽¹¹⁾ for PbS.

section) provides experimental proof of this contention. SnAs with the NaCl-type structure and valence formula Sn_{0.5}²⁺Sn_{0.5}⁴⁺As³⁻, has very nearly the same T_c as InTe with valence formula In_{0.5}In_{0.5}Te²⁻. Each has the same number of carriers per formula unit (although the carrier concentration of SnAs is somewhat higher than that of InTe because its lattice constant is smaller than that of InTe). The pressure-induced phase with stoichiometric formula In3Te4 (see following section) has the anti-Sn₄As₃ structure⁽¹⁰⁾ which is related to the NaCl-type structure. The ionic model applied to this phase indicates that 2½ In3+ and 1 In+ ions are required to balance the 4 Te valencies and there is one carrier per formula unit; for electrostatic balance, Sn₄As₃ requires 3½ Sn²⁺ and ½ Sn⁴⁺ ions. The superconducting transition temperatures of In₃Te₄ and Sn₄As₃ are respectively 1.25-1.15°K and 1.19-1.16°K. Because SnAs and InTe have about the same carrier concentrations, and the same Tc's, it would be logical to conclude that Sn₄As₃ and In₃Te₄ with very nearly the same T_c 's should have very nearly the same carrier concentrations. Thus, In Sn₄As₃ the number of Sn4+ ions must determine the number of carriers per formula unit, which is again one. Thus for consistency, when the lower valence ions are in excess, the number of carriers is determined by the number of higher valence cations, and when the higher valence cations are in excess, the number of carriers is determined by the number of lower valence cations.

The normalized formula for an In-rich compound with NaCl-type structure is

$$In(Te_{2/(2+x)}In_{x/(2+x)}).$$

If it is assumed that all In atoms are ionic, we would have

$$y+3\left(1+\frac{x}{2+x}-y\right)=\frac{4}{2+x}$$

from which

$$y = (1 + 3x)/(2 + x)$$

and

$$1 + \frac{x}{2+x} - y = (1-2x)/(2+x)$$

which is the number of trivalent ions per formula unit. A plot of T_c (midpoints) vs. n for both sides is

shown in Fig. 2; the agreement is seen to be good. The maximum T_c occurs (within experimental error) for stoichiometric InTe which has maximum n.

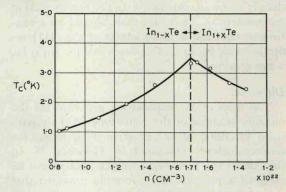


Fig. 2. Superconducting transition temperature, T_c , vs. carrier concentration, n.

We have shown⁽²⁾ that, as predicted, substitution of Ag^+ for In^+ or As^{3-} for In^{2-} resulted in a decrease of In^+ because the In^+ because the In^+ delectrons are tightly bound to it and In^+ (thereby decreasing the number of In^{3+} (thereby decreasing the number of In^+ ions) needed for electrostatic balance. However, in these systems, the carrier concentrations required for a given In^+ is always somewhat higher than required in the In^- Te system. It may be speculated that this results from scattering by intervening In^{3+} ions which are 'inactive' because they are paired with In^+ or In^- and In^- ions. (See also Ref. 2.)

CRYSTAL STRUCTURE OF THE PRESSURE INDUCED In₃Te₄ PHASE

Weissenberg (CuK α radiation) and Buerger precession camera (MoK α radiation) photographs were taken of a single crystal fragment isolated from a run in which an attempt was made to grow a single crystal of the high pressure In_2Te_3 phase. The diffraction symmetry of the combined photographic data is $R\bar{3}m$; with no systematic absences, the possible space groups are $R\bar{3}m-D_{3d}^5$ and $R3m-C_{3v}^5$. The hexagonal axes as determined from the precession camera photographs are $a=4\cdot27\pm0\cdot01$, $c=40\cdot9\pm0\cdot1$ Å; the rhombohedral lattice constants derived from these are $a=13\cdot8_5$ Å, $\alpha=17\cdot7_3^\circ$.

The intensity distribution indicated that all atoms must lie on the threefold axis body diagonal of the rhombohedron (hexagonal c-axis) and that ideally, there must be seven atoms in the rhombohedral cell. The ideal formula of the compound appeared to be In_3Te_4 . With this formula the most likely space group to which the crystal belongs is $R\overline{3}m$ with one In(1) in 1a,000, the other atoms being in 2c, $\pm xxx$ or in the hexagonal description 3a,000, $\pm \left(\frac{1}{3}\frac{2}{3}\frac{2}{3}\right)$ and 6c, $(000, \pm \frac{1}{3}\frac{2}{3}\frac{2}{3}\frac{2}{3}) \pm 00z$. Later it was found that In_3Te_4 has the anti-Sn₄As₃ structure. (10)

Table 2. Interatomic distances and standard deviations

Atom	Nearest neighbors	Distance (Å)	(\mathring{A})	
In(1)	6Te(2)	3.02	0.03	
In(2)	3Te(1)	2.84	0.03	
	3Te(2)	3.24	0.05	
Te(1)	3In(2)	2.84	0.03	
, ,	3Te(1)	3.98	0.03	
Te(2)	3In(1)	3.02	0.03	
	3In(2)	3.24	0.05	
	Next nearest			
T(1)	neighbors 6In(1)	4.27	0.01	
In(1)	6In(2)	4.57	0.03	
In(2)	3In(1)	4.57	0.03	
111(2)	3Te(1)	5.17	0.05	
	6In(2)	4.27	0.01	
Te(1)	3In(2)	5.17	0.05	
10(1)	3Te(2)	4.30	0.03	
	6Te(1)	4.27	0.01	
Te(2)	3Te(1)	4.30	0.03	
	3Te(2)	4.25	0.03	
	6Te(2)	4.27	0.01	

Intensities of selected reflections from the precession camera photographs were estimated visually by comparison with a calibrated intensity strip. Lorentz-polarization corrections were applied by means of the Waser⁽¹³⁾ and Grenville-Wells-Abrahams⁽¹⁴⁾ charts. No correction was made for absorption. As in the case of the isostructural Sn₄As₃, the atoms must be disposed along the hexagonal *c*-axis near multiples of 1/7. Thus using the relative observed structure amplitudes and the Buerger tables, ⁽¹⁵⁾ adjustments around multiples of 1/7 were made. The Busing-Martin-Levy⁽¹⁶⁾ least squares program modified

by Cetlin for the present Bell System IBM 7094 monitor program was then used to refine the parameters. The atomic scattering factors used were from Thomas and UMEDA, (17) corrected for the real part of the dispersion. (18)

The values of the z-parameters obtained were: for In(2), 0.4273; Te(1), 0.1284; and Te(2), 0.2908. Standard errors were 0.0008, 0.0006 and 0.0009 respectively. Except for β_{33} , all other thermal parameters β_{ii} and β_{ij} are zero. β_{33} parameters were also refined, but the standard errors on them indicate that they are essentially indeterminate from the data used. However, because the correlation matrix indicated insignificant interaction⁽¹⁹⁾ with positional parameters, the latter may be considered to be virtually unaffected by the indeterminacy of the thermal parameters.

Interatomic distances and their standard deviations are given in Table 2. In most cases the standard deviations are large. The nearest neighbor coordination of all atoms is octahedral and next nearest neighbor coordination is 12. The In₃Te₄ structure* is related to the NaCl-type structure, but it will be noted (Table 2) that Te(1) has 3In and 3Te (instead of all In) nearest neighbors, In(2) has 9In and 3Te (instead of all Te) and Te(1) has 9Te and 3In (instead of all Te) next nearest neighbors. The In(2)–Te(1) next nearest neighbor distances are rather large because of the large Te(1)–Te(1) contact distances.

The average nearest neighbor In–Te distance is 3.03 ± 0.11 Å. If for the moment, the large limits of error are overlooked, we may compare the average In–Te distance, 3.03 Å with 3.09 Å in the stoichiometric InTe. Because the ratio of trivalent to monovalent In ions in the In₃Te₄ is 5:1 as compared with 1:1 in InTe, one would expect a substantial decrease in the average size of the In atom; 0.06 Å is substantial, but the large limits of error preclude any assertion regarding the comparison of distances.

FURTHER CHARACTERIZATION OF THE PRESSURE INDUCED In₃Te₄ PHASE

A specimen of In₃Te₄ prepared at ~35 kbar and 550°C for 1 hr was very nearly single phase. A slight trace of the NaCl-type phase was seen in

^{*} The reader is referred to Ref. 10 for excellent diagrams of the structure.

Table 3. Powder pattern for In3Te4 (CuKa radiation)

		d Å)	Re	1. I			d Å)	Rel	. I
hk·l	obs.	calc.	obs.	calc.	hk•l	obs.	calc.	obs.	calc
00.3	13.5	13.53	VW	60	12-17	1.205	1.203	VW	32
00.6	6.78	6.79	VVW	20	11.30	1.142	1.142	VVW	23
00.9	4.50	4.51	VW	65	02.31)		(1.068		(24
00.12	3.386	3.382	VW	71	22.0	1.066	1.065	W-M*	42
10.7	3.093	3.110	VVS	1250	11.33)		1.065		(1
01.8	3.006	2.992	VW	39	30.21)		(1.037		(11
10.10	2.729	2.732	W	76	03.21	1.039	1.037	VW	{11
01.14	2.272	2.278	M-S	342	22.9		1.036		(5
11.0	2.128	2.128	S	463	13.7	1.008	1.008	W-M	65
11.3)	2.000	(2.109	W	(35	11.36)		(0.9963		(18
10.16	2.098	(2.097	W	(65	30.24	0.9955	0.9945	W^*	{34
01.17	2.003	2.004	W– M	97	03.24)		0.9945		(34
00.21)	1.934	11.932	W– M	134	31.14	0.9648	0.9649	W	40
11.9	1.934	1.935	VV -1VI	(37	21.31	0.9554	0.9544	W	40
10.19	1.860	1.848	VVW	15	10.43		(0.9143		(12
11.12)	1.800	11.801	VW	J32	31.20		0.9136		5
20.5		(1.797		16	40.7	0.9127	(0.9109	VW^*	{30
02.7	1.754	1.756	M-S	215	30-30		0.9100		6
00.24	1.691	1.691	VW	33	03.30)		0.9100		16
01.23	1.587	1.591	VW	35	00.45)	0.9021	10.9018	VW*	$\begin{cases} 3\\32 \end{cases}$
20.14	1.555	1.555	W-M	93	22.24		0.9011	THE PERSON NAMED IN	(32
20.17	1.458	1.459	VW	- 32	04.14	0.8785	0.8789	VW^*	19
11.21	1.431	1.431	W	69	12.38	0.8491	0.8478	W^*	38
21.7		(1.354		(166	01.47		(0.8407		(24
00.30	1.355	{1.353	M-S	{ 5	02.43		0.8402		27
10.28		11.349		(10	04.20	0.8388	{0.8396	M*	3
12.14	1.255	1.256	W– M	83	32.7		0.8375		69
10.31)		(1.234		(38	22.30)		(0.8368		14
00.33	1.231	1.230	M^*	3	23.14	0.8130	0.8125	W^*	54
30.0	1 201	1.229	-	66	13.31)	0.8064	(0.8062	M*	[60
11.27)		(1.228		(8	41.0	0 0004	0.8051	272	(105

^{*} Broad line.

the powder photograph. The lattice constants determined from the powder photograph (CuK α radiation) are $a=4\cdot26\pm0\cdot01$, $c=40\cdot6\pm0\cdot1$ Å or in the rhombohedral description $\alpha=13\cdot7_5$ Å, $\alpha=17\cdot8_0^\circ$. The powder pattern indexed on the hexagonal basis is given in Table 3. Shown also are qualitatively estimated intensities and those calculated* from

$$I_{\rm rel} = p|F|^2 \times 10^{-5} L \cdot P$$

where p is the multiplicity, F, the structure factor

and L·P the Lorentz-polarization factor. The positional parameters were those obtained from the single crystal analysis, and because the program* allows only individual isotropic temperature factors, In(1) and Te(2) were assigned values of 0.5 Å² and In(2) and Te(1) values of 1.0 Å².†

When this pressure-induced In₃Te₄ phase was heated at 200°C in an evacuated sealed fused silica tube for 67 hr, it decomposed into a mixture of the atmospheric pressure In₂Te₃ phase and an NaCl-type phase with composition (determined from the

^{*} The program used was originally derived by TREUT-ING⁽²⁰⁾ for the IBM 704 and modified for the IBM 7094 by N. V. Vaughan and A. R. Storm.

[†] Differences in vibration amplitudes of the atoms were indicated by the results from the single crystal analysis.

lattice constant) about $In_{0.91}$ Te. The In_3 Te₄ appears to form peritectically; when it is melted under a pressure of ~ 30 kbar, then cooled and pressure released, a mixture of at least the defect NaCl-type and In_3 Te₄ phases is obtained. It is probable that the In_3 Te₄ phase, in this case, contains excess Te.

The pressure-induced In₃Te₄ phase is a superconductor. The most nearly stoichiometric one has a transition at 1·25–1·15°K. The superconductivity of this phase has been discussed in the section on the NaCl-type phases and in Ref. 2.

SOME RESULTS OF PRESSURE TEMPERATURE EXPERIMENTS ON In_2Te_3

The pressure-temperature diagram of In₂Te₃ determined by differential thermal analysis will be the subject of a subsequent paper. In this section we discuss the nature of some of the specimens obtained after being subjected to various pressures and temperatures, then cooled and pressure released. The results on the In₂Te₃ are the most difficult to unravel.

It appears that there exists at high pressures an In₂Te₃ phase which is isostructural with the wellknown Bi₂Te₃, (21) but it cannot be retained metastably as a single phase. It is not a trivial matter to discern the Bi₂Te₃-type phase in the powder patterns, because whenever it is present, the In₃Te₄-type phase is present also and the structures of the two are closely related. Both structures belong to the same space group; both have all atoms on the threefold axis. As shown earlier, In₃Te₄ has the sequence -In-Te-Te-In-In-Te-Te-In-, dividing the threefold axis body diagonal in approximately sevenths, while the In₂Te₃ must have the sequence -Te-Te-In-In-Te-Tedividing the threefold axis body diagonal in approximately fifths. The hexagonal a-axes of the two phases are very nearly equal in length and as one would expect the ratio of the hexagonal c-axes (threefold axis body diagonals) of the In2Te3 to In₃Te₄ is very nearly 5:7 (see below for lattice constants of the former).

The deduction of the existence of a pressure-induced Bi₂Te₃-type compound was based mainly on the results of 'single crystal' X-ray diffraction photography. In each of two runs, a sizeable crystalline piece of normal form In₂Te₃ was put

into a Teflon cell containing low viscosity silicone oil. One was pressurized at about 32 kbar at 400°C, the other at about 29 kbar and 340°C. What appeared by microscopic examination to be a single crystal was isolated from each. In both cases however, three phases were intimately cocrystallized. One of these phases has not been identified but accounts for 'extra' lines found in the powder photographs of most of the specimens for which 'extra' lines occur. The other two phases were the In₃Te₄ and In₂Te₃ types with their hexagonal a- and c-axes in apparently exact alignment. The In2Te3 type phase had hexagonal axes $a = 4.28 \pm 0.01$ and $c = 29.5 \pm 0.1$ Å in both cases as measured on Buerger precession camera photographs. The In₃Te₄ phase from the higher pressure and temperature experiment had a = 4.28 ± 0.01 , $c = 40.2 \pm 0.1$ Å; the other had a = 4.28 ± 0.1 , $c = 40.4 \pm 0.1$ Å.

The c-axis lengths of the In₃Te₄ type phases were substantially smaller than found for stoichiometric or near-stoichiometric In₃Te₄. Further, the 00·9 and 00·21 reflections were no longer observable on the precession camera photographs. It is probable that changes in stoichiometry produce vacancies and shifts in atomic positions.

Unfortunately, we have not been able to obtain metastably a single phase nonstoichiometric In₃Te₄ type. However, superconductivity tests also indicate that some of the In₃Te₄ types phases obtained in the various runs on In₂Te₃ are nonstoichiometric. This conclusion is based on the ideas set forth above on the nonstoichiometric NaCl-type phases. On this basis, excess Te in the In₃Te₄ type phase should result in a decrease of the superconducting transition temperature. For the specimen obtained by pressurizing the In₂Te₃ in the Teflon cell at 32 kbar and 340°C, about 60 per cent was found to be superconducting at 0.96-0.77°K. A specimen that was subjected to 60 kbar and 730°C in a differential thermal analysis experiment was found to contain the NaCl, In3Te4 and In₂Te₃ types. This specimen had two transitions, about 20 per cent of it at 1.25-1.00°K (the NaCltype phase) and about 20 per cent at 0.5-0.36°K. most likely, the In₃Te₄-type phase. On the basis of our ideas, it is considered very unlikely that the In₂Te₃ phase is superconducting.

A diffractometer pattern was taken of In₂Te₃ which had been pressurized at about 29 kbar and

Table 4. Powder pattern for In₂Te₃ specimen subjected to 29 kbar and 760°C

Rel.		In ₃ Te ₄ -type		Bi ₂ Te ₃ -type	
$I_{ m obs}$	$d_{ ext{obs}}$ (Å)	d _{ca1c} (Å)	hk•l	d _{ca1c} (Å)	hk•l
23	4.82*		Contraction of the last	1.50	B 217
11	4.685*				
9	4.538	4.533	00.9		
5	3.722*				
3	3.655			3.661	10.1
12	3.579			3.585	01.2
6	3.399	3.400	00.12		
22	3.365	3.366	01.5		
283	3.136	3.120	10.7	3.136	01.5
12	2.999	2.992	01.8		
7	2.906*				
9	2.757	2.739	10.10	2.784	10.7
4	2.627			2.617	01.8
70	2.313			2.312	10.10
26	2.292	2.288	01.14		
13	2.167			2.178	01-11
100	2.133	2.133	11.0	2.133	11.0
19	1.994	2.013	01.17		
18	1.977			1.977	00-15
16	1.944	1.943	00.21	1.941	10.13
8	1.853	1.855	10.19		
37	1.763	1.761	02.7	1.764	20.5
16	1.681	1.683	02.10		
16	1.566			1.567	02.10
13	1.448			1.450	11.15
6	1.436	1.436	11.21	1.436	02-13
		(1.360	00.30		
25	1.358	1.358	21.7	1.359	12.5
		1.356	10.28		
4	1.332	1.329	11.24		
6	1.305			(1.307	12.8
	1 303			1.304	11.1
8	1.262	1.259	12.14	1.263	21.10
9	1.239	1.240	10.31	1.240	12-11
		(1.231	30.0		
21	1.229	1.227	30.3	1.231	30.0
		1.225	21.16		

^{*} Unidentified.

melted at 760°C. (About 60 per cent of the specimen became superconducting at 1·3-0·97°K.) The pattern (Table 4) contains four unidentified lines which are rather weak and shows the presence of both the In₃Te₄ and In₂Te₃ pressure-induced phases.* The observed relative intensities given in

Table 4 probably suffer from preferred orientation as the crystallites of all the pressure-induced phases, including the NaCl-type, tend to grow along (110) directions.

Acknowledgements—We wish to thank R. G. Maines for assistance with preparation of specimens and high pressure experiments, G. P. Espinosa for assistance with the X-ray powder diffractometer work and J. L. Bernstein for assistance with some of the crystallographic calculations.

^{*} Calculations of spacings in Table 4 are based on the hexagonal lattice constants a=4.266, c=40.8 Å for the In₃Te₄ phase and a=4.266, c=29.65 Å for the In₂Te₃ phase.

REFERENCES

- GELLER S., JAYARAMAN A. and HULL G. W., Jr., *Appl. Phys. Lett.* 4, 35 (1964).
- Geller S. and Hull G. W., Jr., Phys. Rev. Lett. 13, 127 (1964).
- KLEMM W. and VAN VOGEL H. U., Z. anorg. Chem. 219, 45 (1934).
- KENNEDY G. C., JAYARAMAN A. and NEWTON R. C., Phys. Rev. 126, 1363 (1962).
- SHAWLOW A. L. and DEVLIN G. E., Phys. Rev. 113, 120 (1959).
- GOODMAN C. H. L., J. Phys. Chem. Solids 6, 305 (1958).
- SCHUBERT K., DÖRRE E. and KLUGE M., Z. Metallk. 46, 216 (1955).
- KETELAAR J. A. A., T'HART W. H., MOEREL M. and POLDER D., Z. Krist. A101, 396 (1939).
- GELLER S. and WERNICK J. H., Acta Cryst. 12, 46 (1959).
- Hägg G. H. and Hybinette A. G., Phil. Mag. 20, 913 (1935).
- 11. BLOEM J., Philips Res. Rept. 11, 273 (1956).
- 21. INUZUKA H. and SUGAIKE S., Proc. Imp. Acad.

- Japan 30, 383 (1954); HAHN H. and KLINGLER W., Z. anorg. Chem. 260, 97 (1949); HAHN H., Angew. Chem. 64, 203 (1952); WOOLEY J. C., PAMPLIN B. R. and HOLMES P. J., J. Less Common Metals 1, 362 (1959).
- Waser J., Rev. Sci. Instrum. 22, 657 (1951); 23, 420 (1952).
- GRENVILLE-WELLS H. J. and ABRAHAMS S. C., Rev. Sci. Instrum. 23, 328 (1952).
- BUERGER M. J., Numerical Structure Factor Tables, Geol. Soc. of America Special Papers, No. 33, 1941.
- Busing W. R., Martin K. O. and Levy H. A., ORNL-TM-305 (1962).
- Thomas L. H. and Umeda K., J. Chem. Phys. 26, 293 (1957).
- DAUBEN C. H. and TEMPLETON D. H., Acta Cryst. 8, 841 (1955).
- 19. GELLER S., Acta Cryst. 14, 1026 (1961).
- GELLER S., MILLER C. E. and TREUTING R. G., Acta Cryst. 13, 179 (1960).
- Lange P. W., Naturviss. 27, 133 (1939). See also Harker D., Z. Krist. 89, 175 (1934).